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The formation of separation singularities in solutions of the classical boundary-layer 
equations is studied numerically and analytically for the case of a two-dimensional 
incompressible steady flow near a solid surface moving in the direction of the main 
stream. Unlike the previously studied regime of the incipient separation located at 
the maximum point in the external pressure distribution, the breakdown in this work 
occurs under an adverse pressure forcing and involves a regular flow field upstream 
of the Moore-Rott-Sears point with an algebraic non-analyticity downstream. Small 
deviations from the precisely regular approach to the singular point are shown to result 
in an exponential amplification of linear disturbances; in the subsequent nonlinear 
stage the solution terminates in a finite-distance blow-up singularity or, alternatively, 
continues in a regular fashion across the singular station. The case of asymptotically 
small slip velocities is considered and a connection with marginal separation on a 
fixed wall is discussed. 

1. Introduction 
Studies of laminar boundary layers on moving surfaces have several main areas of 

application including, most notably, flow control and optimization, see e.g. Chang 
(1976), and unsteady separation, Williams (1977) and Sychev et al. (1987). Related 
problems also arise in calculations of the time-average flow around vibrating bodies 
at large values of the ‘oscillatory’ Reynolds number as described e.g. in Stuart 
(1963) and Riley (1975), especially in the regime of interaction between the incoming 
and induced mean-flow components (Timoshin 1988), and in recent investigations 
of nonlinear instabilities in wall-confined flows; see Smith & Walton (1989), Walton 
& Smith (1992). The concern of the present paper is with the origin of a singular 
behaviour in solutions of the Prandtl boundary-layer equations for a two-dimensional 
incompressible steady flow on a downstream-moving surface. It has been known since 
the numerical work of Telionis & Werle (1973) that, subject to an adverse pressure 
gradient, a boundary layer of this type can develop a strong blow-up singularity at 
the position of the first appearance of reversed flow in the middle of the streamwise 
velocity profile, in accord with the Moore-Rott-Sears ( M R S )  criterion of separation; 
see e.g. Telionis (1981). The local analytic structure of the singularity was uncovered 
later by Sychev (1980) and Elliott, Smith & Cowley (1983). It is widely recognized 
now that practical implications of the singular termination of the flow at separation 
in this and in many other examples of the Prandtl formulation with a prescribed 
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pressure depend on the particular physical situation and can be dramatic in view 
of the often inevitable global separation of the boundary layer in such cases, with 
immediate impact on the stability of the flow, drag, performance of the airfoil, etc; 
for a discussion and further references see e.g. Stewartson (1974), Smith (1982~) and 
Sychev et al. (1987). 

In this work we are interested in the nature of an intermediate, marginal state of 
the boundary layer bordering the regimes of smooth, attached and grossly separated 
flows. In the framework of the Prandtl strategy the incipient separation can be 
naturally attributed to the formation of mild isolated singularities in the solution of the 
boundary-layer equations, with the flow well-behaved and forward both upstream and 
downstream of the critical station. In realistic situations the marginal singularity can 
emerge, for example, in an initially regular flow field as a result of parametric changes 
in the flow conditions and, therefore, knowledge of the circumstances accompanying 
the origin of separation is important in evaluating the parameter range for the validity 
of the boundary-layer approach and, more generally, for the relevance of the expected 
or assumed structure of the flow as a whole. 

The theory for the flow on a fixed wall was developed by Ruban (1981, 1982a) 
and Stewartson, Smith & Kaups (1982), applied to boundary-layer separation on the 
rounded leading edge of an airfoil at incidence; further developments in this area are 
summarized in the review articles by Smith (1982a7 1986) and Ruban (1990). The 
theory showed that, depending on the value of the angle of attack of the airfoil IX, the 
solution of the boundary-layer equations either remains regular on the entire leading 
edge, when tl < c1, say, or develops the Goldstein (1948) singularity at a finite distance 
from the front stagnation point when IX > ac. In the marginal regime, a = a,, the 
flow is regular and forward up to the point of vanishing skin friction, and admits a 
two-fold (at least) extension further downstream. The first possibility is an analytic 
continuation of the regular solution into the domain of reversed flows. Exponentially 
weak non-analyticity associated with the upstream propagation of disturbances (or the 
inverse parabolicity of the equations of motion) introduces further non-uniquenesses 
in the reversed-flow regular branch, see Stewartson (1958) and Smith (1984). The 
second, and a less obvious possibility incorporates a forward-flow solution with a 
discontinuous gradient of the streamfunction. It is this second solution that provides 
the limiting state of the boundary layer when the angle of attack approaches a, 
from below. The concept of a marginal singularity on a fixed wall proves crucial for 
understanding the hysteresis and stall phenomena in flows near turbine blades and 
aircraft wings; see the references above. 

The issue of a marginal singularity on a downstream moving surface was first 
raised by Sychev (1987) in connection with the flow separation on a rapidly rotating 
cylinder immersed in a uniform stream. In agreement with computations by Nikolayev 
(1982), the Sychev theory rests on the assumption that the position of the incipient 
singularity coincides with the maximum point in the external pressure distribution. 
When the angular velocity of rotation decreases to a certain finite value the boundary- 
layer thickness on the cylinder develops a gradually growing isolated maximum 
accompanied by the formation of the MRS point in the velocity profile tangential 
to the surface. According to Sychev (1987), the singularity originates in a locally 
inviscid, pressure-driven deceleration of the fluid particles in the middle layers of the 
flow upstream of the critical section followed by a predominantly symmetric (owing 
to the effective lack of viscous diffusion) acceleration immediately downstream. More 
recent computations carried out by Lam (1988) confirmed the trend towards the 
unbounded thickening of the boundary layer on approach to the critical state, as well 
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as the choice for the position of the singularity at the point of zero pressure gradient. 
It is interesting, however, that the numerical solution does not seem to reproduce the 
theoretically expected shape of the velocity profile in the vicinity of the MRS point, 
an issue which requires further computations. 

The rotating cylinder provides an important but, at the same time, a very special 
example of the moving-wall boundary layer. For the flow, apart from being singular 
in one particular section, must also be periodic in the angular coordinate, a condition 
which imposes severe restrictions on the class of admissible solutions and on the form 
of singularity, we believe. Again, the requirement of zero pressure gradient at or 
close to the incipient breakdown does not seem to be universal on physical grounds, 
especially bearing in mind the fixed-wall singularity which first appears in the region 
of a decelerating external forcing. 

In the subsequent sections of this paper we aim to show that a marginal singularity 
in the moving-wall flow is indeed possible under an adverse pressure gradient, in 
which case properties of the local solution are bound to be new, different from those 
in Sychev (1987). First, in our analysis the marginal structure is viscosity-dominated 
both upstream and downstream of the critical section where the M R S  conditions 
are first met. Secondly, and rather surprisingly (although not dissimilar from the 
case of the fixed-wall boundary layer), the flow field turns out to be completely 
regular in its upstream part up to the MRS section, and continues downstream 
with an algebraic singularity in the displacement thickness and an infinite gradient 
of the streamfunction. The third main feature of the solution will be seen in the 
manner in which the marginal structure responds to infinitesimal changes in the 
initial and boundary conditions introduced far upstream. The reaction of the flow at 
the regular MRS point to stationary disturbances is found to be based on exponential 
eigenfunctions locally, and, therefore, the response is much stronger than in the 
fixed-wall case, cf. Ruban (1981, 1982a) and Stewartson et al. (1982). This feature 
has immediate connections with the mechanism of the usual temporal instability 
which operates in any classical boundary layer with non-monotonic velocity profiles 
(see Cowley, Hocking & Tutty 1985); the relation between the temporal mode and 
the stationary eigenfunction is discussed in Timoshin (1995). The fourth, and the 
final new property to be mentioned here, follows directly from the nature of the 
local eigenfunction in the linearly perturbed flow. Subject to small disturbances thc 
marginal solution undergoes local, nonlinear and viscous, transformations somewhat 
upstream of the singular point and then terminates with a strong blow-up singularity 
of the Sychev (1980) or Elliott at al. (1983) variety, or, alternatively, continues 
smoothly into the region of accelerating flows. This explains the significance of 
the marginal solution in dividing the fully regular attached and strongly singular 
separated regimes of the boundary-layer development. 

Various arguments are summoned in order to demonstrate the existence and, more 
importantly, the typicality of marginal separation with the properties listed. So, 4 2 
deals with the numerical solution for a model situation involving the development of 
a constant-shear flow affected by an adverse pressure gradient. Despite its simplicity 
and model nature, the problem provides a physically realistic example of the flow in 
the lower part of a conventional? e.g. Blasius, boundary layer on a fixed wall altered 
by a localized disturbance in the external pressure, cf. Smith et al. (1981), with a slip 
velocity applied simultaneously at the wall. We show that for a fixed slip velocity 
flow separation tends to develop when the pressure forcing reaches a certain level; 
the form of the singularity at separation supports the suggested regular approach to 
the MRS point. The major properties of the marginal solution, including the singular 
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continuation downstream, linear eigenfunctions and the nonlinear bifurcation are 
addressed in 5 3 in a local consideration in a small vicinity of the regular MRS point. 
The case of a small slip velocity and a connection with the wall singularity on a fixed 
surface are examined in $4. The paper concludes with a brief discussion of the results 
and of possible extensions of this work. 

2. Numerical solution of a model problem 

by the equation 
The boundary-layer flow of an incompressible fluid on a moving surface is governed 

for the non-dimensional streamfunction ly (x, y ) ,  with the boundary conditions 

y = 0, aly /ay = S U , ~  (x) at y = 0. (2.2) 

Here x , y  denote the non-dimensional coordinates along and normal to the surface 
respectively; the pressure gradient p' (x) and the slip velocity 6u, (x) are assumed to 
be given and 6 is a parameter. Equation (2.1) also requires a boundary condition at 
the outer edge of the boundary layer as y -+ co, and an initial condition at x = 0, 
say. These depend largely on the particular flow geometry. 

In the model problem considered in this section an infinitely long flat plate moves 
along the x-axis with a constant velocity 6, so that u, = 1 in (2.2); the flow is in the 
half-plane y 2 0. In the domain x < 0, the pressure and the vorticity are assumed to 
be constant, and then the streamfunction is written as yi = y 2 / 2  + 6 y ,  after a suitable 
normalization. The flow downstream of the origin is affected by a prescribed pressure 
gradient. Hence equation (2.1) is to be solved in the domain x 2 0, y 3 0 with the 
boundary conditions (2.2), with the initial condition 

ly = 1 2 y  2 + 6  y at x = O ,  y 2 0 ,  (2.3) 

y =  ~(~-d(x))~+p(x)--6~+0(1) as y + m ,  (2.4) 

and subject to the outer-edge constraint 

containing the displacement function A (x) unknown in advance. 
The formulation (2.1)-(2.4j is typical for a boundary layer of the conventional (e.g. 

Blasius) type encountering sudden changes in the flow conditions such as for instance 
a relatively short and shallow roughness on the wall, cf. Smith et al. (1981). The 
crucial local responce in the perturbed flow is concentrated then in the lowest part 
of the main boundary layer; therefore only a constant-shear part of the basic-state 
velocity profile is retained in the initial/boundary conditions for the disturbance. 
Here we suppose (and verify in the subsequent sections) that the nature of the 
breakdown in the moving-wall problem is mostly independent of the particular outer- 
edge constraints. The next significant point in our modelling is a convenient choice for 
the driving pressure gradient in (2.1). In the incompressible-flow theory the pressure 
is determined by the roughness shape via the Cauchy-Hilbert integral of a thin-airfoil 
kind or, alternatively, the appropriate roughness can be found as an improper integral 
of a chosen pressure gradient. However, in order to deal with realistic body shapes 
(especially when the pressure is assumed constant upstream of a certain station as in 
(2.5) below) and also to achieve a better control over the properties of the pressure 
distribution, we shall now take a broader view on the physical origin of the local 
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FIGURE 1. The skin friction T and the displacement thickness A vs. x for a fixed-wall flow, 6 = 0, 
from numerical solution of (2.1)-(2.5). The curves are drawn with the step Aa = 0.005. 

problem and include in the scope of the theory other basic flows such as compressible 
boundary layers (both subsonic and supersonic, up to high Mach numbers), viscous 
wall jets, liquid films, and so on. The perturbed-flow formulation for all of them 
reduces to (2.1j-(2.4) in effect (e.g. Smith 1982a; Sychev et aE. 1987; Timoshin & 
Smith 199S), with the global flow arrangement being only reflected in the form of the 
pressure/roughness-shape link. The latter proves to be remarkably simple in certain 
cases. So for a supersonic outer flow the Ackeret formula shows that the roughness 
height is proportional to an integral of the pressure, hence a sensible body shape is 
obtained for virtually any given forcing. In the case of a wall-jet boundary layer the 
shape is related to a double integral of the pressure function. Or, even simpler, a 
direct pressure-height proportionality holds for certain regimes of perturbed liquid 
films. Each of these flow configurations may be looked at as providing a realistic 
background for our analysis in this section where the pressure forcing rather than the 
underlying local disturbance source is specified explicitly. 

In the computations below the pressure gradient is chosen in the form 

p) (x) = ax2 (1 + for x > 0 ;  p/ (xj = o for x < 0, (2.5) 

which, with a variable amplitude parameter CI > 0, features a very mild adverse forcing 
at both small and large distances downstream with the maximum phax = 22/3a/3 at 
x = 21f3. The initial and boundary-value formulation (2.1j-(2.S) was then solved 
numerically with an implicit second-order-accurate in x and y method, marching in 
the positive x-direction with iterations at each step. The outer-edge condition (2.4) 
in the form d2y/dy2 = 1 was imposed at a suitably large distance y = ymax from the 
wall. 

The flow on a fixed wall (6 = 0) provides a convenient test of the relevance of the 
model. The computed distributions of the skin friction T (x) = d2y/r?y2 (y = 0) and 
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of the displacement thickness A(x) are shown in figure 1 for a few values of a near 
a, = 0.775 which marks the cross-over from the regular flow to the Goldstein-type 
breakdown with a square-root singularity in the wall shear. The marginal singularity 
develops at approximately x, = 2.29. The computational grid in this example has 
y,,, = 8 and the step lengths Ax = 0.00625,Ay = 0.005. 

Our main computations were for two values of the wall velocity, 6 = 0.1 and 6 = 0.2, 
and variable pressure forcing. The typical grid parameters are Ax = 0.00625,Ay = 
0.0O25,ym,, = 8, although in the case 6 = 0.2 we found it necessary to increase ymx 
to 16 in order to preserve the accuracy of the displacement function. We observe, 
first of all, that the slip effect postpones the flow separation to a certain extent, so 
that the solution remains regular in the a-range up to approximateIy a, = 0.893 
for 6 = 0.1 and then up to a, = 1.014 for 6 = 0.2. However, further increase 
in the pressure forcing leads in both cases to the formation of a new marginal 
state and, subsequently, to a singular breakdown of the flow. The skin-friction 
and the displacement thickness distributions shown with solid lines in figure 2(a) 
for the first case 6 = 0.1 split up into two distinct groups. The singular solutions 
(a > a,) terminate with an abrupt thickening of the boundary layer. The singularity 
is very strong and, owing to its development within a relatively short x-interval, it is 
difficult to obtain accurate solutions closer to the breakdown without excessive grid 
refinement although the behaviour of the displacement thickness and the formation 
of a pronounced minimum, tending to zero, in the streamwise velocity profiles (not 
shown in the graph) indicate the locally inviscid internal singularity studied in Sychev 
(1980) and Elliott et al. (1983). 

The family of regular solutions for a somewhat lower pressure gradient in figure 2(a) 
reveals the tendency to build up a distinct maximum in the displacement thickness as 
a increases to its critical limit. The thickening of the boundary layer is clearly due to a 
local deceleration of fluid particles in the middle of the flow. In the subcritical regime 
the deceleration is followed by a sudden acceleration (regardless of the overall adverse 
forcing) with the displacement thickness simultaneously decreasing. Qualitatively, the 
process is similar to the behaviour of fluid particles in the near-wall layers on the 
fixed surface, cf. figure 1, and also resembles the formation of the singularity in 
the rotating-cylinder problem although, in contrast to the latter case, the maximum 
displacement seems to be finite in the limit and the flow functions become strongly 
asymmetric near to the breakdown. 

Next an attempt was made to approach closer to the incipient separation using the 
technique of parametric shooting with refinement of the a-interval between the last 
regular and the first singular solutions thus obtained. As in the studies of Sychev 
(1987) and Lam (1988) the marginal singularity is expected to occur at the first 
appearance of an isolated zero in the minimum u,,, of the streamwise velocity across 
the layer, regarded as a function of x and of the parameter a. In computations it 
soon became clear, however, that the grid refinement required for maintaining the 
accuracy of the solution imposes strong limitations on the computational time. Also 
the marginal moving-wall singularity turned out to be much more sensitive to the grid 
and the parameter variations than its fixed-wall counterpart, because even with the 
a-step of order lo-’ - the solutions obtained were either strongly singular or still 
too remote from separation, judging from the rate of approach of u,,, to its zero limit. 
As an illustration. the dashed lines in figure 2(a) refer to our computation nearest to 
breakdown of the regular solution of the finite-difference equations with fixed grid 
parameters (the same as for the solid curves). One can notice here remarkably regular 
behaviour of the flow functions upstream of the incipient singularity with, however, 
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FIGURE 2. (a)  The incipient singularity on the moving wall from solution of (2.1)-(2.5) with 
6 = 0.1. The solid lines for the displacement thickness A and for the wall shear 7, us. x, are drawn 
with the step Aa = 0.001. The dashed lines 1-4 refer to the regular solution close to the breakdown 
obtained for a = 0.89343538 : 1,d; 2, ~OU,,,; 3, the normal coordinate of the minimum velocity 
ym,*; 4 , ~ .  ( b )  The neighbouring regular and the first singular solutions of (2.1)-(2.5) with the slip 
increased to 6 = 0.2. The regular solution has a = 1.01448494, Aa between the lines is 5 x 10 -*. The 
dashes show the function (d - dJ4 plotted for the comparison with the local solution (3.13). 

stronger gradients immediately downstream. The streamwise velocity reaches its 
minimum, u,,, = 0.05 or so, close to the maximum in the displacement thickness. The 
positioning of the minimum wall shear at approximately the same station may seem 
puzzling, but the explanation lies in the small value of the wall-slip velocity chosen 
and hence a relatively large ratio of u,,~ to the wall velocity. An analysis in $ 4  deals 
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specifically with a complicated structure of the breakdown on a slowly moving wall 
which our computations are hardly capable of capturing in full detail. 

With the slip velocity increased to 6 = 0.2 the location of marginal separation 
is shifted further downstream, x, = 4.6562, and the maximum in the displacement 
thickness distribution becomes somewhat higher, d(x,) = 3.4494; see figure 2(h). In 
all other respects the pattern of the flow development repeats the previous case. 
Altogether, the computations in this section suggest the origin of separation at the 
regular M R S  point first with, however, a slow approach to the limit solution. The 
dashed-line functions in figure 2(a), for example, require the corresponding value of 
a = 0.893435.. . to be specified with an accuracy less than but, of course, much 
larger approximation errors invalidate the last digits in this estimate for x,. 

3. Local analysis of the incipient singularity 
The theory below aims to derive properties of the marginal boundary layer from 

local consideration in a small neighbourhood of the M R S  point. First, we postulate 
a regular main flow upstream of the M R S  point and examine possible continuations 
of the solution downstream. The second issue to be considered here concerns the 
behaviour of a slightly perturbed basic flow. 

Let w = yo (x, y) denote a solution of (2.1) with a regular approach to the M R S  
point; the spatial coordinates of the latter are x,,y,. In the computations of the 
previous section this corresponds to the critical amplitude a = a, and hence to the 
specific pressure distribution, p(x, x,) = po(x)  say. At small distances upstream the 
streamfunction yo expands in a power series 

(3.1) 

( 3 4  

V’O = woo (Y) + (x, - x) Y’Ol (Y) + 0 ((x - XJ’) 2 

woo = a00 + fa03 (Y - Y J 3  + . . . > V’Ol = a10 + all ( y  - y,) + . . . 
where 

as y -+ yh, with constant coefficients a,. The constants a03,~11 are assumed to be 
positive, the former on account of the adverse pressure gradient at x = x,, a03 = 
p b ( x , ) ,  and the latter from the requirement of the lack of reversed flow in the 
associated velocity profile 

uo = dV’o/dy = $203 ( y  - yh)2 + . . . + a11 (x, - x) + . . . (3.3) 

at x < x,. Also the MRS conditions of zero velocity and vorticity eliminate the linear 
and the quadratic terms in the expansion (3.2) for yoo. The streamfunction at x < x, 
can be extended analytically into the domain x > x5, leading thereby to an entirely 
regular solution with flow reversal in the middle part of the boundary layer. Our 
computations in 4 2 suggest the possibility of a second solution with forward-flow 
velocity profiles and a singularity at x, + 0. 

The structure of this singular solution relies on a passive, effectively inviscid flow 
in the main part of the boundary layer, with the streamfunction given as 

Y’o = Yo0 (Y) + (x - X Y 4  cy& (y) + 0 ((x - x.,)l’2) , (3.4) 

where the ‘displacement’ constant c must be zero in the interval 0 < y < y,, on 
account of the no-penetration condition at the wall. The value of c in the upper 
region y > y, follows from the solution for the intermediate nonlinear viscous layer 
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in the vicinity of the MRS point where 

yo = am + (x - x,)3’4 f (11) + . . . , y = ( y  - ys)  (x - X S ) p 4  (3.5) 

(3.6) 

and y = 0 (1) as x - X, -+ 0. Substitution of (3.5) into (2.1) yields the equation 

f”’ + i f f!’  - ; ( f r y  = a03 

for the function f (y), with the boundary conditions 

f = &3(y + + o(1) as y + +a, (3.7) 

f = +03y3 + o(1) as y -+ -a, (3.8) 
from matching with the solution (3.4) above and below the inner layer. The change 
of variables 

(3.9) 
-1/4 q = uo3 ( z  - fcao;1’4) , f = ao3 1’4cp, T = ;cuo3 1’4 

reduces (3.6)-(3.8) to the form 

(3.10) 

which also implies the evenness of the function q’ ( z ) .  Because of the last property 
the solution domain can be reduced to z 2 0. 

The problem (3.10) was solved with two different numerical methods. One of 
them was based on a straightforward iterative solution of the equation for a given 
C in the interval 0 < z < z,,, with the end-point constraints cp(0) = 0, cp(z,,,) = 

grid step Az = 0.002. Appropriate values of C were chosen subsequently from the 
condition cp”(0) = 0. In the other method a NAG subroutine was used. Both sets 
of calculations indicate the existence of only two admissible solutions, illustrated in 
figure 3. One solution is simply cp = iz3 ,  5; = 0, as in the incoming flow; the zero value 
of C indicates the vanishing singular term in (3.4). The second solution has non-zero 
streamwise velocity cp’ > 0 for all z with ~ ’ ( 0 )  = 1.6236, and 5; = 1.2956. In the 
course of preparation of the manuscript Dr V. B. Zametaev (private communication) 
has kindly informed us that the non-uniqueness in the formulation (3.10) has been 
known to him since his study of marginal separation at the trailing edge of a flat 
plate in 1991-1992 (unpublished results). The same problem was also studied in 1989 
by Dr J. W. Elliott in connection with unsteady trailing-edge separation, whose paper 
currently in preparation confirms our numerical results. 

Two features of the second solution should be mentioned here for qualitative 
comparison with computations in 8 2. The minimum velocity has strongly asymmetric 
behaviour in the vicinity of the MRS point: 

/ 2  q”’ + $qq” - ; (cp ) = 1; cp = +(z f c ) ~  + o(1) as z -+ +_a, 

6z,,, 1 3  + 7 ~ ~ m a x ,  1- 2 $(zmu,) = izrm, + i?zmUx, where z,, = 10 typically, and with the 

(3.11) 
(3.12) 

according to (3.3) and (3.5), (3.9). Also the displacement thickness, which was assumed 
to be regular at x < x,, contains an algebraic singularity 

as (3.13) 

1/72 I 
Urnin (x) = a03 (0) (X - x , ) ” ~  + . . . if x > x,, 

A (x) = A (x,) - 2raa,-:I4 (X - x , ) ” ~  + . . . , x -+ x, + 0, 

downstream from the MRS point, as follows readily from the general relation 

dA 
dx 

(3.14) 
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FIGURE 3. The streamfunction rp and the velocity rp’ us. z for the two solutions of (3.10); = i z 3  
is the unperturbed flow with C = 0; p2 corresponds to the singular wake downstream of the MRS 
point. 

In agreement with (3.13), the dashed line in figure 2(b) drawn for the computed 
function ( A  - A ( x , ) ) ~  at x 2 x, has a clearly discernible portion of linear growth 
downstream of the incipient separation. 

Further analysis can be made here in order to substantiate the appearance of 
incipient separation in the second, singular rather than in the regular form. We 
address now the changes in the main flow with the streamfunction yo (x, y) perturbed 
by small variations in the pressure distribution. Suppose that the pressure gradient 
contains a parameter a as, for example, in $ 2 ,  and that the specific value a,provides 
the basic-flow solution yo. Then, with Aa = a - a, small, the flow functions expand 
as 

P’ = Pb (XI  + Amp’, (XI + 0 ((W2) > (3.15) 

w = Yo (X,Y) + A w l  (X,Y) + 0 ((W2) 9 (3.16) 

where the perturbation term y1 is governed by 

(3.17) a3y1 +Pi (x) = ay3’ 2 (avo ”1) avo d2W1 a w  a2wo 
ax ay ay ax ay2 dx ay* 

with appropriate initial and boundary conditions. 
The balance between the convective and viscous terms in (3.17), in conjunction 

with the vanishing main-flow velocity (3 .  l), (3 .2) ,  suggest an unusually strong singular 
behaviour of the perturbation 

y1 = exp [p (x, - x)-’ + 0 (In Ixs - X I ) ]  F ( V I )  + . . . , (3.18) 

near the MRS point in the viscous layer ql = (y - y,) (x, - x)-l/’ = 0 (1) , where, on 
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substituting into (3.17), F (ql j satisfies the equation 

F”’ = pa03 [ ( iq;  + u ~ ~ u G ‘ )  F’ - v l F ]  . (3.19) 

The boundary conditions 

F = 0 (q:) as q1 + +a; F + 0 as v + -a, (3.20) 

follow from an analysis of the flow in the main part of the boundary layer, similar to 
(3.7). The required solution of (3.19), (3.20) must have the real part of ,u positive and 
was given, in different notation, in Cowley et al. (1985). In particular, 

p =  1, 2 03 a-2 1 1  ? (3.21) 

and hence small changes in the flow conditions produce an exponentially strong 
local response in the perturbed flow field closer to the MRS point. Perhaps this 
explains the stringent requirements on the grid/parameter refinement encountered in 
our marching computations in $2. 

The fast-growing perturbation term invalidates the expansion (3.16) at a small 
distance from xs. The disturbance first becomes nonlinear in a viscous domain 
centred around ys,  where the leading terms in the streamfunction expansion are 

= aoo + palo + e3/4 u03 - 1 P  312- v ( x , y ) f . . * .  - - (3.22) 

Here the local variables X,y are introduced by 

(3.23) 1/2- 
Y ,  x = xs - + Ea2 11 a-1 03 - x, y = y.7 + E l f 4  (a11/a03) 

and E is a small parameter such that 

(3.24) 

The main nonlinear term in (3.22) is governed by the initial- and boundary-value 
formulation 

(3.25) 

- 
W = :T3 +Y+ Ce”’F (all aO3 y + o eYf2 as x + -x, (3.26) 

lI2 -If2-) ( 
- 

(3.27) 

w =  ;y3 + y + o ( l )  as y-’-cc. (3.28) 

As before, here the displacement function 2 is present in the outer-edge condition 
(3.27) above the inner layer, but not in (3.28), cf. (3.8), (3.20). An additional shift in 
the origin K + X+ const allows us to choose C = 0,1, or -1, in the initial condition 
(3.26), and, consequently, the problem has three different solutions. One solution 
with C = 0 simply repeats the unperturbed flow: y = y +  F33/6, 2 = 0. Two other 
solutions were obtained numerically with the method described in $2, except the 
domain of integration is now X 3 0, 171 < y,,, with the typical grid parameters 
y,, = 3, AX = 0.01, AF = 0.0015. In computations the initial condition was replaced 

(3.29) 

for the two cases illustrated in figures 4 and 5 

- 
y = ~(~--(x))’+Y-~(~)++o(~) as y++a, 

- 

by 

where C = -loF3 and 

- w = ~ ~ ’ + ~ + ~ p ’ e ~ ( l + e ” ) - ~  at X = O ,  
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FIGURE 4. The displacement thickness 2. the ininimum velocity across the layer Emzm = min {@,/aY) 
and the normal coordinate of the velocity minimum j&, us. X, for the singular decelerating solution 
of (3.25), (3.27)-(3.29) with C = -lop3. 

FIGURE 5. The flow functions 3, Em,,, ymin us. Y, as in figure 4 but for the regular accelerating 
solution of (3.25), (3.27)-(3.29) with C = loT3. The dashed line 1 drawn for the function &Ei in  and 
the straight line 2 given by 7 = 0.264 (a- 40) have equal slopes at large X, in agreement with (3.5), 
(3.12). 
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respectively. Of course, more sophisticated techniques can be used in order to 
incorporate the specific initial condition (3.26); however the overall trends in the 
nonlinear flow development are hardly affected by our simplified choice. The reason 
for this lies in the nature of the exponential branching in the far-field asymptote, 
Unlike the conventional boundary-value problem for parabolic-type equations with 
the initial conditions specified at a finite x-section (at x = 0, for example), the initial 
velocity profile ZI = @/@ = y2/2 + 1 in (3.26) is given as X + -a. The steady 
two-dimensional boundary-layer flow with the parabolic velocity profile is known 
to be unstable, in a sense, to stationary disturbances (cf. Timoshin 1995 and the 
next section) and the joint influence of the two factors - the unbounded X-domain 
and the instability - means that the exponentially small term must be retained in 
(3.26) in order to ensure the uniqueness of the solution. In the derivation above the 
eigenfunction was triggered by a distributed pressure variation (3.15) but, physically, 
any other source of disturbances, such as a local pressure variation, changes in the 
outer-edge or wall conditions, or even an artificial disturbance in the streamfunction 
distribution at a chosen x-station, must have a similar effect. Indeed, in some of our 
test computations the initial condition was taken in the form (3.29) with C = 0, but 
the pressure gradient in (3.25) was perturbed in a localized %interval by an amount 
of order This turned out to be sufficient to alter the solution nonlinearly 
further downstream, with the typical outcome in one of the two forms shown in 
figures 4 and 5; see also the next section. An additional small deceleration of the 
flow provokes the ultimate finite-distance termination of the solution with the Sychev 
(1980), Elliott et aE. (1983) singularity, figure 4. By contrast, the slightly accelerated 
solution in figure 5 remains regular and evolves towards the self-similar limit (3.5) 
when X + +a as follows from the behaviour of the computed function $u&(X), the 
dashed line in figure 5,  showing the same finite slope at large X as the straight line 
2 given by p = 0.264 (X- 40), in agreement with (3.12) with a01 = 1, ~ ' ( 0 )  = 1.6236. 
Small parametric deviations from the precisely regular approach to the MRS point 
inevitably switch the flow over to either strongly singular breakdown somewhat 
ahead of the MRS section, or to the entirely regular accelerating flow, in favourable 
agreement with the computational features in 9 2. 

4. Marginal separation on a slowly moving wall 
In a two-parameter problem of the kind considered in $2  the marginal solutions 

form a one-parameter family, so that, for example, the critical pressure amplitude a, 
appears to be a function of the slip velocity 6, cf. figures 1 and 2(a,b). In general, 
further computations are required in order to establish the behaviour of the function 
a,(6) in the entire &range, although some analysis is possible for small values of 6 
as we will show in this section where, starting with the well-known local structure 
of the fixed-wall flow, we derive all essential features of the moving-wall marginal 
singularity. 

Here we suppose that the pressure gradient in (2.1), as well as the initial and the 
outer-edge conditions, are regular functions of E, whereas the wall condition in the 
form (2.2) contains the parameter 6 only. The fixed-wall solution with the marginal 
singularity at x = x g  is denoted as YO (x, y) ,  the corresponding pressure function is 
p = PO (x), and the value of the parameter is a0 (= a, (0)). In the vicinity of xo we 
have PA (x) = pw + 0 (x - xg) with a constant pm > 0, and then the streamfunction 
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in the near-wall part of the flow expands as 

(4.1) 
2 yo = &u3 + iao J X  - xo/ y + . . . as y -+ 0, J X  - x01 + 0, 

with a positive constant Q; see Ruban (1981, 1982~) and Stewartson et al. (1982). 
Consider alterations in the main flow (4.1) caused by the simultaneous effects of a 

small slip velocity 6 << 1 and variations in the external forcing. On setting Aa = a-ao, 
IAcxl << 1, the imposed pressure gradient expands as 

(4.2) 
with similar expressions for the initial and the outer-edge boundary conditions, if 
necessary. At a finite distance upstream of the singular point the solution of (2.1), 
(2.2), (4.2) expands in the form 

(4.3) 

P’ = l’d (x) + AaP; (x) + 0 ((Aa)2) , 

ly = ‘yo (x, Y) + 6 Yl (x, y )  + AaY2 (x, Y )  + . . . I 

a 3 ~ .  + 6. p’ = I a a\yoayi ayoa2yi alvia2yo 
ax ( ay ay ) ax ay ax a y 2  12 1 a y 3  ’ 

with the linear perturbation terms Yc, i = 1,2, satisfying 

(4.4) __- - -- - __- 

and the wall conditions 

zlu, (x) at y = 0. (4.5) 
a y, y i  = 0, __ = ij. 
8Y 

Here 6, is the Kronecker delta. 
Solutions of the linear equations (4.4) develop algebraic singularities as x + xo - 0. 

With regard to the Aa-induced term Y2, this was established in Ruban (1981, 1982a) 
and Stewartson st al. (1982). In particular, 

Y2 = a2 (xo - x)-l y2 + . . . , x - xo - 0, y + 0 (4.6) 

represents the leading term in the perturbed streamfunction in the near-wall domain 
with the typical thickness y = 0 (xo - x)~!~). The constant a2 here is determined 
by global solution of the problem. A corn lementary solution in the main part of 
the boundary layer, Y2 = 2a2p& (xo - x)- i?Yo (XO, y) l a y  + . . . , follows then from 
locally-inviscid balancing in (4.4) and the match with (4.6). In this section, owing to 
the dominant role of the near-wall regions in the formation of singularities, we can 
often disregard the passive upper part of the boundary layer. 

A singular expression similar to (4.6) also holds for the slip-induced component 
Y1. For a particular solution 

P 
( 

satisfies equation (4.4) and the trivial outer-edge condition and yields the local 
behaviour Y1 = u, (xo)poo ( 2 ~ )  y (xg - x)-’ + . . . , cf, Timoshin (19881, whereas 
the initial condition, which we do not discuss here explicitly, can be violated. The 
required correction term, being governed by the homogeneous equation with trivial 
conditions at y = 0, can alter the coefficient, but not the type of singularity in the 
general case. Hence 

Yl =al(xO-x) y + w y + . . .  as x-+xo-O, y - 0 ,  

without loss of the generality, where a1 is a constant, w = uw (xg) and we retain the 
higher-order term associated with the motion of the wall. 

-1 2 

(4.8) - 1  2 
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The outer solution (4.3), (4.6), (4.5) ceases to be valid in a small neighbourhood of 
xo in the inner region with the spatial scales x - xo = 0 ( B 1 l 2 )  , y = 0 (6’/*) if we 
assume, to start with, that Aci = O(6).  A technique similar to that in Ruban (1981, 
1982a) and Stewartson et al. (1982) yields then 

for the streamfunction in the inner domain. The inner solution is regular (singular) 
when the combination IC = A m 2  + 6al is positive (negative) and hence the leading- 
order effect of a small slip velocity turns out to be fairly straightforward: the critical 
value a, is shifted from 010 by an amount of order 6, whereas the form and the 
location of the marginal separation remain unaltered. It is important to note that K 

is equal to the total coefficient of the algebraic singularity in the outer solution (4.3), 
to leading order. 

Closer to the new threshold value a, = a. - 6al /a2 ,  however, the flow in the inner 
region becomes affected by the wall velocity through a mechanism similar to that in 
Elliott et al. (1983). Assuming, for example, that the slip velocity 6 is fixed and ci 

varies we define 

(4.10) a =  a0 - 6ala;’ + 68/5a1, a1 = o (I) ,  
and seek a solution of (2.1) in the form 

w = 83/51 ~P00Y3 +P5 ( ; Y * A ( X )  + W Y )  + ... + 8 9 / 5 @  + ... (4.11) 

in the region Y = 

the boundary-value problem 

= 0 (1) , X = (x - xo) 8-4/5 = 0 (1). 
The equation for the main-order wall shear A ( X )  is derived from the analysis of 

Y - = iY2AA’ + WYA’, 
a@ ) 3 ( A y 2  d2@ 

a ~ 3 - ~ ~  2 axay ax (4.12) 

(4.13) 

for a contribution to the higher-order term @ in (4.1 1) non-polynomial in X and Y .  
The usual solvability requirement yields the integro-differential equation 

- 
dt 

A1 - X L  +p= -sL (71’(t)+ 1) (X- t) 1/4 ’ (4.14) 

with the initial condition 
- 
~ = - ~ + 7 ( 2 q ~ ’ + . . .  as x - t - m ,  (4.15) 

cf. Ruban (1982b) and Smith (1 982b). Here 

(4.16) 

(4.17) 
and r (z) is the gamma-function. 

The solutions of (4.14), (4.15) illustrated in figure 6 for the case of the downstream- 
moving wall, s = 1, were obtained numerically with a second-order-accurate method 
marching from x = -5 with the typical step Ax = 0.005. Owing to the lack of 

y = 4w (2poo)1’4 ~ - ~ r  (f)  , - y = -4a, 315 u2al J ~ J  -815 , 
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0 

FIGURE 6.  The scaled wall shear 2 us. x from solution of (4.14) with s = 1 for various r. 

the parameter 7 indicated on the figure. The critical value is 7 = 0 (2 = -3) , for 
it divides the families of regular (7 < 0) and singular (7 > 0) solutions. The finite- 
distance termination of the solutions is accompanied by an unbounded decrease of 
the wall shear, 

(4.18) 

with the position of the singularity xs determined by the whole solution. The next 
stage in the development of this singularity invokes the fully nonlinear equation (2.1), 
but on a shorter x-scale, with the subsequent locally inviscid breakdown, see Elliott et 
al. (1983). The implication is that the entire parameter range 7 > 0 provides strongly 
singular terminations in the full problem. 

In the near-marginal limit 7 -+ 0 an expansion of the form 

;I = -Y+pi1 (z) + 0 (72) (4.19) 

yields 

(4.20) 

and hence 

x1 = -n1/225/2 [r (:)I -2 ~ ' 2  exp [ ~ O ~ T ]  + . . . as x -+ +a, (4.21) 

where 00 = 16 [r (a)]-4, cf. Brown & Stewartson (1983). This shows that small 
deviations from the linear function 2 = -X restore the nonlinearity at a distance 
L >> 1 from the origin, where 

(4.22) 1/5 L = [-56;' In IT\] + . . . as 7 -+ 0. 

The governing equation for the nonlinear readjustment region is obtained by making 
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FIGURE 7. A sketch illustrating the asymptotic splitting of the near-wall part of the marginally 
separated boundary layer on a slowly moving surface; xo marks the position of the fixed-wall 
marginal separation and, at leading order, the point of zero wall shear in the moving-wall problem: 
I, viscous layer of thickness (xg - x)’I4 upstream of xo; 11, the region governed by (4.14); 111, the 
region of exponential amplification of the disturbance (4.43); IV, the central nonlinear domain with 
the controlling equations (4.28)-(4.32). 

the substitution 

X = L + L - ~ z ,  2 = LB ( 2 )  (4.23) 

into (4.14) with s = 1. The result is 

(4.24) 

which should be solved subject to 

B=-l-sign(7)exp(&,z)+ ... as z+-m (4.25) 

on account of matching with (4.191, (4.21). The formulation for the readjustment zone 
was studied earlier in Smith & Elliott (1985) in the context of unsteady boundary- 
layer dynamics. They show that there exist three solutions of the problem: the 
unperturbed flow with B = -1, sign(7j = 0, the solution with a finite-distance 
singularity (4.18) when sign@) = 1, and the regular shock-layer solution for sign@) = 
-1 with the behaviour B ( z )  --+ 1 far downstream. In the latter case, which gives 
the appropriate form of the subcritical flow in figure 6 as 7 + -0, the approach to 
the far-downstream limit is algebraic and hence the representation (4.19) has to be 
replaced by Z = X + 0 (7) in the domain X > L. 

Equation (4.14) was derived under the assumption that the variation of the pa- 
rameter a in (4.10) is of order when 6 + 0. Within this a-interval the marginal 
solution turns out to be specified by the condition 7 = 0 or, equivalently, a1 = 0. 
In other words, the near-marginal solutions can be extended further downstream if 
the coefficient of the algebraic singularity TC in the outer solution (4.3), (4.6), (4.8) is 
made smaller than 0 (8’”). In fact, it has to be exponentially small, as we shall show 
shortly. 

When 011 in (4.10) and 7 in (4.14) become sufficiently small in absolute value the 
nonlinear readjustment zone (4.23) moves downstream until the controlling equation 
for this region acquires a fully nonlinear form. The sketch in figure 7 illustrates the 
asymptotic structure of the flow field for this new regime. The distance between the 
nonlinear zone IV, which will be playing the central part in the remainder of.this 
section, and the position of the marginal fixed-wall singularity is d1I2k, k = 0 (l), 
whilst the streamwise extent of the nonlinear zone is much smaller, of order a2. The 



188 S. N. Timoshin 

solution here is sought in the form 

(4.26) 

(4.27) 
where W = w/(kao) ,  (X,?) = O(1). Substitution of (4.26), (4.27) into (2.1) yields the 
Prandtl equation 

-3- - - 
y = 63/2poaw y (X, y )  + . . . , 

x = XO + 61’2k + 62p,W4X, y = 6 112-- W Y ,  

a$ a2y, a i j a 2 i j  a 3 i j  
ay3 ’ ay azay a: dy2 + 

= - (4.28) 

to leading order. The initial and boundary conditions are 

$ = O ,  :=b at y=O, (4.29) 

(4.30) 

@ = i(7-2 (X)+b)3-ib(y--d (X)+b)2+b(y-d (X)+b)+o(l) as y + a, (4.31) 
on account of (2.2), (4.11), (4.19). The parameter b = k2u;p&l w-l marks the position 
of the nonlinear region in the flow field. Apart from the slip condition (4.291, 
the formulation (4.28)-(4.31) resembles closely the problem (3.25)-(3.28) from the 
previous section, and, following - the scenario therein, the exact solution in the form 
y = .!33 - +by2 +by, A = b, turns out to be non-unique owing to an exponential 
bifurcation at minus infinity. Setting 

(4.32) 

a i j  
aY 

- - 
y + 1-’ - ib-2 + by 6y  2 y as x + -a, 

- 

- $ = 1-3 6y  - iby2+bj7+Zexp(jiX)f(y)+ ... as x+-a ,  

(4.33) 
- uo = 172 - 2 L  6 + b ,  

with constant C, ji, we arrive at the eigenvalue problem 

(4.34) 

for the perturbed streamfunction F(y). Our concern is with the parameter range 
0 < b < 2, in which the in-flow velocity Go in (4.33) is strictly positive. As discussed 
in Timoshin (1995), the solution of (4.34) with ji > 0 is unique, for a fixed b. The 
dependence j i  (b) proves to be monotonic, with the limiting properties 

j i=2[T  ($)/T (a)]‘+ . . .  as b + 0 ,  (4.35) 

= 1(2 2 - b)-2 +... as b +2-0.  (4.36) 
Next, the non-trivial eigenfunction in the far field suggests the existence of two per- 
turbed solutions of the full nonlinear problem (4.28)-(4.31) with the initial condition 
in the form (4.32) and with C = +1, on account of a shift transformation in X. 

With the same argument as in 0 3,  we chose to compute the solution of (4.28)-(4.32) 
using the initial condition (4.30) applied at X = 0. In the two cases illustrated in 
figures 8 and 9 (the grids A 2  = 0.0005, AT = 0.00125, Y,,, = 10 and AX = 0.005, AT = 

O.OOS,jT,,, = 20 respectively) the incoming flow (4.30) is perturbed by a small pressure 
disturbance 

which in the interval 0 < Z < 2 replaces the unit pressure gradient in the momentum 
equation. Further downstream the pressure gradient is maintained constant, dF/d2 = 

dF/dX = 1 + h,Z2 (2 - 2)2, (4.37) 
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FIGURE 8. Singularity in the solution of (4.28)-(4.32), (4.37) with 6 = 1, hp = 0.001: the wall shear 
z = @@/a7 (y = 0), the displacement thickness d, the vertical coordinate ym,, of the minimum 
velocity, and the value of the velocity minimum Gmj, = min { a @ / d 3 ,  us. the scaled coordinate x. 
I 
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0 ... ...40............... ......... 3 

FIGURE 9. The regular solution of (4.28)-(4.32), (4.37) with h = 1, hp = -0.01: the wall shear 7, the 
displacement thickness d, and the sum ?+ 2, us. x. 

1 ; nevertheless the flows with h, = 0,001, h, = -0.01 (figures 8 and 9 respectively) 
do not return to their original form. It was verified numerically that the entire range 
h, > 0 provides solutions with strong singularities. In the limit h, -+ 0 the position 
of the finite-distance breakdown moves downstream, so that the observed deviation 
from the initial state (4.30) clearly becomes due to the pressure-induced eigenfunction 
(4.32) with Z < 0 (provided that the normalization f"(co) = 1 is used). The opposite 
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FIGURE 10. The regular solutions of (4.28)-(4.32), (4.39) for decreasing values of 2 - b. The solid 
lines show the minimum velocity Em,,, the displacement thickness 3 and the wall shear 7 vs T 
for b = 1.85, 1.9, 1.925, 1.94, 1.95, 1.96 (the arrows indicate increasing b). For the comparison 
with (3.5), the dotted lines 1, 2 show the limiting forms Zmin = 1.6236?/*, 2 = 2 - 2 x 1.2956X1/4 
respectively derived from (3.12), (3.13) with A(x,) = 2, 6 3  = 1 and with the values of cp'(O), ? 
given in the text. 

sign in the pressure perturbation produces regular, accelerated-flow solutions with the 
asymptote 

(4.38) 
far downstream, where hl is a positive constant whose value depends on b and h,. 
The comparison is made in figure 9 where the sum 7 + 3 is seen to have zero limit as 

Of especial interest for the main subject of this paper is the limiting form of the 
regular solutions of (4.28)-(4.32) as b + 2 - 0. In computations for small positive 
values of 2 4  the grid (AX = 0.00125, A7 = 0.0025,~m, = 5 )  and the pressure gradient 
are kept constant whereas the source of disturbances was incorporated in the initial 
condition 

(4.39) 
imposed at 2 = 0; the last term in (4.39) is equivalent to a small increase in the 
wall velocity downstream of the origin. The sequence of solutions for progressively 
decreasing values of 2-b is shown in figure 10, where the trend towards the formation 
of a singular structure in the middle of the flow as b + 2 - 0 is evident in the much 
delayed and relatively quiet development of the skin friction compared to the fast 
initial decrease in the displacement thickness correlated with the acceleration of the 
fluid particles in the middle part of the flow. In the limit b = 2 - 0 the solution 
of the problem (4.28)-(4.32) consists of the regular flow field upstream of a certain 
point which can be chosen as 2 = 0, with the singular start of the flow acceleration 
immediately downstream. Except for insignificant changes due to the scalings (4.26), 
(4.27), the ensuing inner structure with a viscous sublayer near the MRS point 
performs the same functions as the inner region in 9 3. 

- 
ij = t Y 3  + b,y2 + by as x + 00 

- x + a. 

- 
= iy3 - ;by2 + by - 10-4y2, 



Boundary-layer flow1 on a downstream-moving surface 191 

In figure 7 the limit b + 2 - 0 implies the shift of the nonlinear domain IV 
downstream closer to the point of flow reversal in the regular solution of the full 
boundary-layer equations. Thus the case of a small slip velocity gives extra credibility 
to the proposed marginal structure of $ 3  with a regular flow field upstream of the 
MRS point. 

Finally here we note that the flow structure in figure 7 holds only if, for a given 
slip 6, the variable pressure parameter ct is specified with an extremely high accuracy. 
Indeed, in the upstream part of the flow (zone I) we require that the streamfunction 
and the parameter expand as 

m co 

Y = C d n y n  ( x ,  Y )  + v (6) Y’ (x, Y ) ,  a = C a n a n  + v (61, (4.40) 

where v (6) is assumed to be smaller than any integer power of 6 and the constants 
an are chosen such that the corresponding terms y n  remain regular as x t xo - 0. 
The term y’ ( x ,  y )  represents imperfections in the solution, so that 

(4.41) 

and a’ is a constant, cf. (4.6), (4.8). The regular (power series) part of the streamfunc- 
tion in (4.40) continues analytically across the xo-section into zones 11, 111, whereas 
the singular term y’ changes strongly on passing through the intermediate regions. 
First in zone 11, where x - x o  = 0 (64/5), the algebraic singularity in (4.41) is smoothed 
out and then turned into a fast growing exponential function of the form 

y’ = ~ ~ ~ 6 - ’ ~ ’ ~  exp [+6-480 u: yP4 (x - x ~ ) ~ ]  + . . . (4.42) 

immediately downstream of zone 11, cf. (4.21); here CI1 is an insignificant order-one 
coefficient and other constants are as in (4.17), (4.21). Next, in zone 111 with the spatial 
variables x - x o  = 6’/3x3, y = 61/2y3, (x3,y3) = O ( l ) ,  the perturbation acquires the 
form 

(4.43) 
where p3,f3 follow directly from the solution of the problem (4.34) with 

n=O n-0 

y’ = a’y2 (xo - X I - ’  + . . . as y + 0, x + xo - 0, 

y’ = d-41/20 exp [p3 (xj) f3 ( x 3 , y 3 )  + . . . , 

replaced by 

(4.44) 

(4.45) 

respectively. Note that in the eigenvalue problem so obtained the local streamwise 
coordinate x3 appears as a parameter. Finally, the perturbed streamfunction (4.43) 
contributes nonlinearly to the regular part in (4.40) on approach to zone IV. Hence 

v (6) = o (S71/20) exp [-p3 (IC) (5-3/2] (4.46) 

provides the order-of-magnitude estimate for admissible variations in x in (4.40). 

5. Discussion 
The main conclusion of this work is that marginal separation in the downstream- 

moving-wall boundary layer can occur under an adverse pressure gradient, and 
various parts of the analysis indicate that the flow breakdown studied here can 
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appear in a broad range of applications. The singular structure in $ 3  holds for 
a general boundary layer. The flow regime in $2 is best known in the theory of 
boundary layers over surface roughnesses; see e.g. Smith (1982a), Smith et al. (1981), 
Sychev et al. (1987) and Timoshin & Smith (1995). The statement of the problem in 
the previous section was made deliberately formal in order to emphasize the typical 
nature of the phenomenon, with, however, immediate applications to the leading-edge 
flow of Telionis & Werle (1973), for example. Nevertheless, and as a good starting 
point for a futher study, our analysis does not exclude other possibilities such as 
the breakdown in the rotating-cylinder problem. Computations in Nikolayev (1982) 
and Lam (1988) provide very strong evidence in favour of a zero pressure gradient 
at incipient separation. The structure proposed in the present paper with regular 
flow upstream of the MRS point cannot be transferred to the point of maximum 
pressure simply because the appropriate solution in the boundary layer does not 
exist; see Sychev (1987). It is possible, of course, that the breakdown on the rotating 
cylinder develops at a numerically small, but still finite, distance upstream of the 
pressure maximum. The complexity of the problem in general is also evident in the 
computations reported by Lam (1988) and S. J. Cowley (1994, private communication) 
for a model situation similar to that in $ 2 ,  but with the pressure gradient changing 
sign from adverse to favourable at a finite distance from the starting section, which 
brings the flow conditions closer to the rotating-cylinder problem. Although the 
singularity in their case tends to appear near the point of zero pressure gradient, 
the gap between the position of the maximum in the displacement thickness and the 
alleged location of the singularity decreases too slowly to be conclusive. In any case, 
the existence of our and Sychev's candidates for the marginal singularity makes the 
problem quite different from its fixed-wall counterpart, where there seems to be no 
alternative to the solution described in Ruban (1981, 1982a) and Stewartson et al. 
(1982). Perhaps, a formulation of the type considered in $2, but with an x-periodic 
pressure and either zero or non-trivial (positive or negative) slip at the wall would be 
worth studying in this context, cf. Lam (1988). 

Many studies on high-Reynolds-number separated flows support the view that flow 
regimes containing classical boundary layers should be regarded as physically sensible 
as long as the solution in the boundary layer remains regular, so that the marginal 
breakdown often gives the first indication of approaching global changes in the flow 
pattern. In a parameter-varying flow the next stage in the development of separation 
usually invokes an interaction between the boundary layer and the external potential 
flow. Negoda & Sychev (1987) consider effects of interaction in the flow with the 
inviscid marginal singularity; the equivalent of their theory in our case is a more 
difficult task, for it involves a necessarily numerical treatment of an interactive version 
of the fully nonlinear viscous formulation (3.25)-(3.28). 

Extension of this work to time-varying and three-dimensional flows should also 
prove interesting. In the simplest self-similar regimes two-dimensional unsteady and 
three-dimensional steady boundary layers are governed by effectively two-dimensional 
strictly parabolic equations and admit, therefore, all essential features of planar steady 
flow, including the possibility of slrong and marginal singularities; see e.g. Elliott et 
al. (1983) and Zametaev (1987). Effects of non-similarity, on the other hand, bring 
about the hyperbolic properties of the controlling equations and can alter the form 
and the entire meaning of the marginal separation, cf. Zametaev (1989), Cowley, Van 
Dommelen & Lam (1990). 

The author is grateful to Professor S. N. Brown and Dr J. W. Elliott for numerous 
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suggestions on improvement of the manuscript, to Drs S. J. Cowley and S. T. Lam 
for sending their unpublished numerical results, to Professor F. T. Smith and Dr 
V. B. Zametaev for their interest and discussion, and to referees for their comments. 
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